If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31y^2-48=y
We move all terms to the left:
31y^2-48-(y)=0
We add all the numbers together, and all the variables
31y^2-1y-48=0
a = 31; b = -1; c = -48;
Δ = b2-4ac
Δ = -12-4·31·(-48)
Δ = 5953
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{5953}}{2*31}=\frac{1-\sqrt{5953}}{62} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{5953}}{2*31}=\frac{1+\sqrt{5953}}{62} $
| 8x-2-7x=16 | | -12=4(f-24) | | 8y+2=15.80 | | 6y+3=19.20 | | 7x+16=-8x-14 | | 40(-2x-6)=180 | | 2x+10=54° | | 2x-5(x)=120 | | 12/x-10.5=-3 | | 5.3x4=15.61 | | 20x+40=3x-85 | | .3s+4=9 | | 125y+225=4950 | | 9=-3(e+2) | | 5(x^2+16x+80)=4(x^2+22x+121) | | 2x-0.4=2.6 | | 2(x-1)^2+9=113 | | 2x+8=4/12x=20 | | -4(t-3)+10=-2(5+6t) | | 3x+5=1450 | | 3c+5c-350=1450 | | 6y-8=15 | | 3|x-1|+12=8 | | 0.25t-6=-4 | | 65=s-5 | | 2x^2+27x+70= | | 7=h-2 | | 10s-3=7 | | y=3.4+1.5(21.4) | | 9w^2-75w^2-54= | | 5+8c=9c | | 5=25–4y |